


智慧建筑AI需求汇总

智慧建筑+AI:建筑工地相关业务流程及AI应用总览

环节	场景	AI应用
设备材料进出场	车辆出入口	材料防偷盗 (车斗空载、车斗满载、篷布遮盖) 渣土车清洗 (车牌、车轮未清洗、地面泥土)
基础工程	人员出入口	合规穿戴(安全帽、反光衣)
	施工大区	<mark>裸土未覆盖</mark> 消防器材 缺失
主体工程	高空作业	合规穿戴及作业(安全绳)
土体工性	临边	临边围挡缺失
	塔吊	吊物下方人员安全管理 卷扬机乱绳
室内装修	质量检测	墙面裂缝 地面空鼓

表格涵盖所有典型需求,标红项已有实际项目落地,标黑项请关注详细功能说明,具体项目可评估

建筑工地:AI落地应用功能一览表及典型案例

环节	场景	AI应用	投入说明 (训练费用包含素材采集和标定费用,仅供参考,复杂需求可具体 沟通)	关键备注
设备材料	车辆出入口	材料防偷盗 (车斗空载、车斗满载、篷布遮盖)	以单个出入口为例,每个出入口一般需要采集1w张素材,每种状态素材各3000张,算法训练落地预计2周时间	此功能不仅可用于智慧工地,还可以用于煤矿运输,可防止有偷盗物资现象发生,并减少一定的人工成本,可推广。
进出场		渣土车清洗(车牌、车轮未 清洗、地面泥土)	以单个出入口为例,采集1000张车轮素材,包含清洗过的车辆和未清洗的车轮,算法训练落地预计1周时间	渣土车清洗监管项目有无依赖地方监管要求强弱,识别车 轮是否清洗,功能落地快,雨雾或过水轮胎无法区分
基础工程	人员出入口	合规穿戴(安全帽、反光衣)	一般单个工地有1个点位,算法训练落地预计1周时间	基线已有安全帽相机,但是没有安全帽+反光衣二合一功能; 工地巡检超脑包含这两个功能, 可以根据项目实际情况选择工地巡检超脑或者AI开放平台超脑训练
主体工程	施工大区	裸土未覆盖	以单个大型工地3个点位计算,算法训练落地预计投入耗时2周	图像语义分割模型效果优于检测、混合模型,但是标注环节(像素级标注)耗时较长;工地巡检超脑已包含该算法;需提前和用户沟通业务闭环方式(用于设计占比规则)

杭州市余杭区住建委

已落地

环节	场 景	示意图	业务说明	AI应用	场景方案设计	落地情况	业务交底
设备 材料 进场	车辆出入口		由于工地进出车辆多且杂,容易夹带建材,依靠人力存在管理漏洞。需对工地出入口进行监管,需要判断工地大车出场时车斗是否运输建筑材料;	材料防偷盗(车斗空载、车斗满载、篷布遮盖)	方案架构: 前端相机+AI服务器+海康行业平台 方案设计: 通过混合模型,对货车载货识别,进行检测+分类。输出识别结果上传到平台; 风险点: 车辆种类较多,且运输货物的种类较多,同时对相机安装要求较高,容易存在误报。		业务判断:属于设备辅助监管,传统方式为人工巡检,存在较大漏洞,通过AI可有效避免管理漏洞造成的财产损失。 落地可行性:可复制性较强
基础工程	人员出入口		工人进入工地现场,因 人身安全需要穿戴合规 (安全帽、反光衣), 未按要求穿戴需要及时 提醒。	合规穿戴 (安全帽、 反光衣)	方案架构: 1、AI相机+行业平台 2、利旧普通相机+AI超脑+行业平台 方案设计: AI设备分析不合规穿戴行为,现场 联动语音设备提醒,或者报警事件上传业务平台走违规处理流程。		业务判断:工地的场地临时性、项目周期短、创新预算有限等特点,一般都会选择现成的智能产品。 落地可行性说明:工地场景穿戴类的功能较成熟,已有产品可推广
主体工程	施工大区		建筑工地的裸土堆放区, 受环境管理要求及相关 法律要求,需要使用绿 色苫布对裸土进行覆盖。	裸土未覆 盖	方案架构: 工地现场利旧普通相机/高空球机+AI超脑+行业平台 方案设计: AI超脑分析裸土区域是否按要求覆盖(通常设置一定的比例), 若出现大面积裸土未覆盖则上报相关管理方进行处理。 风险点: 目前支持图像语义分割模型的只有AI超脑, 其他AI产品暂不支持; 且最终的报警图片还做不到示意图的样式、只有一个红色方框,预计2023Q1支持。		业务判断:有裸土需求的一般分为两类,一类是住建、城管等监管部门,一类是建筑公司、施工单位等实施企业,前者为了监管、后者为了避免罚款。 落地可行性说明:裸土功能图像语义分割算法本身的识别效果较好,但是后续的业务闭环流程需要深度结合用户侧进行设计(例如是否结合天气、如何确定每个点位的报警占比等)

己落地

业务说明		AI应用	场景方案设计	落地情况	业务交底
市政和城管等监管单位,	渣土车清 洗过车监 管	渣土车清洗 (车牌、车轮未 清洗、地面泥土)	方案架构: AI像机+基线车牌抓拍像机+普通监控+ISUP协议+ISV客户云端软件 方案设计: 识别洗车台上车辆车牌,记录清洗图片和视频;识别出口车辆车轮,上报未清洗车轮抓图,根据报警监控点录像确认车辆信息;客户云端算法识别出口地面有无泥土,如有则联系门卫清洗。 风险点: 雨雾天气、积水对轮胎未清洗识别存在干扰	一个工地1台AI摄像机识别车轮,1台车牌识别摄像机,1台普通摄像机提供大门口地面画面。客户使用开放平台训练的功能只有车轮,采集2000张素材,包含清洗过的车辆和未清洗的车轮,用时7天,非雨天识别准确率90%+	业务判断: 渣土车清洗监管项目有无依赖地方监管要求强弱,可在海康建筑整体解决方案基础上,增加亮点落地可行性:车牌、车轮识别目标(车轮)特征明显,识别难度较低;路面泥土滩迹形态不一,颜色不一,识别难度较大

车牌识别

车轮未清洗识别

出口地面有泥土

有难度

环节	场景	示意图	业务说明	AI应用	场景方案设计	落地情况	业务交底
	施工大区		受消防管理部门监管要求, 工地范围内需要有专门的地 方放置消防器材,且不得有 缺失。	消防器材缺失	【可尝试】方案架构: AI相机+行业平台 方案设计: AI相机分析特定区域的消防器材 数量,如果不满足要求,上报告警至平台, 对相应工地进行核实通报 风险点: 红色消防器材跟背景有些相似,且 不同场景摆放差异比较大,容易造成漏识别		业务判断:属于建筑工地的非必须AI功能项,建议从消防业务入手查看其他行业的机会点落地可行性:选择合适的场景,在消防器材种类确定的情况下,有一定的可行性
主体工程	高空 作业	2021年11月16日 皇职在 13:57:36	工人在高空作业时必须系安全绳,以保证人身安全、避免出现高坠事故。安全绳的需求一般有两种:一种是类似反光衣的穿戴,检查工人是否穿了安全绳(带);一种是高挂低用的作业要求,检查安全绳的挂钩是否绑在高于人体作业的位置。	合规穿戴 及作业 (安全绳)	【技术实现有难度】 方案设计:普通相机/高空球机+AI超脑+行业平台 风险点: 1、高空作业位置不固定,没有合适的相机可以追踪工人的高空作业行为 2、安全绳的特征不够明显,尤其是和反光衣的颜色相似(橙色),不易识别 3、建筑主体会随着工期推进而产生变化,场景变化较大、作业背景较复杂		业务判断:属于建筑工地常见的安全管理需求,但是仅凭视觉AI技术存在很大的局限性,较难达到落地使用的要求,建议优先考虑其他解决方案(例如规章制度、智能传感器)落地可行性:较难达到落地使用的目标,关于是否穿戴安全绳的需求可以具体情况具体分析
	临边	2022 to 15 15 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	工地上的临边和围挡主要是 为了避免安全事故,围挡主 要出现在地面、临边主要出 现在建筑内部(例如电梯井 等),临边围挡缺失存在事 故风险,所以需要加强监管	临边围挡 缺失	【已有方案未验证】方案设计:使用图像语义分割模型,每一个相机点位,逐一确定临边围挡的初始合规占比数值(比如30),再结合业务需求确定缺失报警占比数值(比如减少到25),即存在临边围挡缺失的情况风险点:无法定位临边围挡缺失的具体位置,暂时只能做到感知缺失		业务判断:属于建筑工地常见的AI功能项,有一定的项目需求,目前推荐使用传感器方案,视觉AI方案待测试验证落地可行性:待测试验证

有难度

环节	场景	示意图	业务说明	AI应用	场景方案设计	落地情况	业务交底
主体	塔吊		一些建筑材料需要使用塔吊 或者起重机等设备进行运输, 但是吊物起吊过程中,为了 保证人身安全,吊物下方不 得有人。	吊物下方人 员安全管理	【技术实现有点难度(空间错位)】 方案设计:识别吊物和人体,做目标框之间的关联,通过目标框重叠面积判断是否有人在吊物下方。 风险点:起吊作业位置随机,很难有相机的最佳安装角度。存在一定的空间错位。		业务判断:属于建筑工地常见的安全管理需求,但是仅凭视觉AI技术存在很大的局限性(空间错位)落地可行性:相机安装位置及空间错位问题较难解决,故落地难度较大
工程	H		卷扬机是一个整理绳索的设备,如果没有整齐排列,存在绳索断裂、损坏卷扬机设备的风险。	卷扬机乱绳	【可尝试】 方案设计:通过混合算法模型识别卷扬机 绳索的状态 风险点:卷扬机乱绳的数据较难采集		落地可行性 : 算法识别难度一般,落地难度较大(相机安装、通电通网、数据采集等)
室内装修	质量 检测	瓷砖空鼓	当建筑主体建造完毕后,建筑施工会进入到室内装修阶段,室内装修结束后,监管单位会对房屋建筑项目进行质量验收,其中墙面裂缝、地面空鼓等质量问题较为常见,希望借助AI技术自动识别质量问题。	墙面裂缝 地面空鼓	【技术实现有点难度】 风险点: 1、此类需求不适合使用固定点位摄像头进行识别,需要借助类似移动机器人的移动设备进行数据采集和质量问题识别。 2、同一质量问题(例如墙面裂缝)的样式较多,且特征不够明显,往往需要近距离观察才能发现。		落地可行性 : 算法识别难度较大,落 地难度较大


智慧建筑+AI: 酒店标准服务管理流程及AI应用总览

高星酒店内,有顾客出现的场景,酒店管理人员需要对工作人员的服务行为进行管理,以保证服务质量。

区域	场景	AI应用
迎宾	大堂门口	保安开车门 员工在离岗 (服装判断)
	办理柜台	员工在离岗(头肩判断) 起身迎客 玩手机
住宿	住宿楼层	人员异常行为分析 (逗留、徘徊、倒地、塞小卡片等)
	打扫房间	透明清扫 (对视频数据中的房间进行分区)
	顾客用餐区域	餐前服务询问
餐厅	后厨传菜口	菜品长时间停留 重点菜品识别计数
₩	消防栓	消防栓遮挡
公区	走廊	非礼宾部推车出现
健身房	室内游泳池	救生员在离岗 (服装判断)

酒店: AI落地应用功能一览表及典型案例

环节	场景	AI应用	投入说明 (训练费用包含素材采集和标定费用,仅供参考,复杂需求可具体沟通)	关键备注
迎宾	大堂门口	保安开车门	一般单个酒店每个大门1个点位,算法训练落地预计投入耗时1周	算法只解决了开车门动作的识别问题,实际业务应用需要通过软件平台做进 一步的数据分析及应用(例如统计周期数量、关联人员、数据可视化等)
沙兵	○ 人里 」口	员工在离岗(服装判 断)	一般单个酒店每个大门1个点位,算法训练落地预计投入耗时2周	如果现场需要通过员工服装来判断员工身份,再看是否离岗,那么需要收集员工一年四季的服装数据,且需要注意员工服装与其他人员之间的区别
		员工在离岗(头肩判 断)	一般单个酒店1个点位,算法训练落地预计投入耗时1周	通过人体头肩+区域规则就可以实现在离岗管理,可以与其他含有人体/头肩的算法一起训练,避免重复标注
住宿	办理柜台	起身迎客	一般单个酒店1个点位,算法训练落地预计投入耗时2周	该算法涉及组合规则(先判断是否有顾客坐下,然后判断是否有员工起立),可能涉及利旧设备的移位(需要侧对柜台)
		玩手机	一般单个酒店1个点位,算法训练落地预计投入耗时1周	算法本身识别手拿手机的动作,算法无法判断员工是在玩手机还是因为工作 需要使用手机
餐厅	 后厨传菜口	菜品长时间停留	一般单个酒店1个点位,算法训练落地预计投入耗时2周	通过识别菜盘+停留时长实现,需要收集所有样式的菜盘(例如圆形、椭圆形、汤盅、汤碗等),提前考虑闭环应用方式(只是做记录还是要实时提醒)
食儿		重点菜品识别计数	一般单个酒店1个点位,算法训练落地预计投入耗时2周	需要确定重点菜品的出菜品质是否标准,建议优先从整条鱼、整只虾等外形 特征变化不大的菜品入手
	消防栓	消防栓遮挡	一般单个酒店约10个点位(看利旧相机的角度是否合适	由于消防栓遮挡并非酒店的重点管理项,利旧点位中很少有角度合适的相机。因为酒店内的灯光,可能会存在反光遮挡,从而出现误报。
公区	走廊	非礼宾部推车出现	一般单个酒店约10个点位,算法训练落地预计投入耗时3周	非礼宾部推车出现位置随机、样式不同,所以需要查看录像确认平常会出现的非礼宾部推车样、点位、时间,故素材收集阶段耗时较长
健身房	室内游泳池	救生员在离岗(服装 判断)	一般单个酒店1个点位,算法训练落地预计投入耗时1周	室内救生员的着装较固定,算法实现难度低。 室外游泳池的救生员在离岗需要结合现场情况进一步评估。

已落地 酒店:功能应用落地情况说明

		· · · · · · · · · · · · · · · · · · ·		- 15			19th Asian Games 杭州2022年亚运会官方赞助商 Official Sportsor of Asian Games Hanszahou 2022
环节	场景	示意图	业务说明	AI应用	场景方案设计	落地情况	业务交底
迎宾	大堂		五星酒店一般会有完整的标准服务流程,当顾客乘车达到酒店时,门口的迎宾人员需要打开车门迎接顾客,管理人员希望对该项工作进行可视化管理。	保安开车门	方案架构: 现场利旧相机+AI超脑+行业平台 方案设计: 由AI超脑分析检测开车门动作,平台记录每日 车辆经停数量、开车门数据,关联相应工作人员,在平台 做数据看板或者业务分析(不同人员每日工作完成度) 风险点:会出现多辆车同时到达、只能开其中一辆车门的 情况,具体的应用闭环方式需要和用户深入讨论确定;夜 晚室外光线较差暂不识别。		业务判断:不同高星酒店的服务要求和流程都不太一样,仅供参考,可拓展其他场景车辆出入口处进行应用 落地可行性说明:项目测试中,算法识别难度 较低,落地难度较低
			五星酒店一般会有完整的标 准服务流程, 当顾客进入大 堂时, 门口的迎宾人员需要 迎接顾客, 不得擅自离岗。	员工在离岗 (服装判断)	方案架构: 现场利旧相机+AI超脑+行业平台 方案设计: 通过服装判断员工身份,再判断是否离岗 风险点: 员工服装与其他人员服装相似时,会产生一定的 漏误报;且需要收集一年四季的工服数据。		业务判断 :各行各业常规管理需求 落地可行性说明 :算法识别难度较低,落地难 度一般(需结合服装样式及工作换班流程等)
住宿		106-09-2021 星期 10-00-05	五星酒店一般会有完整的标 准服务流程,当顾客前往柜 台办理入住手续时,工作人	员工在离岗 (头肩判断)	方案架构: 现场利旧相机+AI超脑+行业平台 方案设计: 通过头肩算法+区域限制+离岗时长实现,不 需要通过其他属性(例如着装)判断员工身份 风险点:避免遮挡		业务判断 :各行各业常规管理需求 落地可行性说明 :算法识别难度较低,落地难度较低
	办理 柜台		员要保证在岗且需要站立迎 接顾客,管理人员希望对该 项工作进行可视化管理。	起身迎客	方案架构: 现场利旧相机+AI超脑+行业平台 方案设计: 当柜台外侧有人靠近时,检测柜台内侧是否有 人起立,记录相关数据上报平台做业务分析 风险点: 相机位置及角度需要协调好,建议侧对柜台;该 需求涉及组合规则。		业务判断 :不同高星酒店的服务要求和流程都不太一样,仅供参考 落地可行性说明 :项目测试中,算法识别难度 较低,落地难度一般,涉及组合规则
		WALL-II-SI WHEN IN ALTONOMY	酒店出于管理需求,员工可以使用手机进行消息回复,但是不允许员工玩手机超过一定时间,如果超过规定时间需要云端进行记录	玩手机	方案架构: 现场利旧相机+云眸分析 方案设计: 云眸进行抓图分析,定制逻辑当连续抓取N张 图中均存在玩手机目标时,产生报警并进行事件记录 风险点:恰好每次抓拍都有人拿起手机,则会产生误报		业务判断 :对酒店而言,需求并非强需求,可作为亮点功能 落地可行性说明 :项目测试中,算法识别难度 较低,落地难度较低

已落地

酒店: 功能应用落地情况说明

环节	场景	示意图	业务说明	AI应用	场景方案设计	落地情况	业务交底
级压	后厨		为了保证顾客的用餐 体验,传菜口的菜品 需要尽快上至餐桌;	菜品长时间停留	方案架构: 现场利旧相机+AI超脑+行业平台 方案设计: 划定识别区域,算法识别餐盘+规则设置超时时长, 餐盘停留超时上报平台 风险点: 餐盘样式较多,训练数据需要覆盖所有样式的餐盘; 需提前考虑闭环应用方式(只是做记录还是要实时提醒)		业务判断 :不同高星酒店的服务要求和流程都 不太一样,仅供参考;其中重点菜品识别计数 可以考虑在展石其他参东
餐厅	传菜 口 口		对于一些重点餐品, 需要进行识别及计数, 用于菜品盘点。	重点菜品识别计数	方案架构: 现场利旧相机+AI超脑+行业平台 方案设计: 确定重点菜品清单,划定识别区域,算法识别重点 菜品并计数 风险点: 重点菜品识别需要保证菜品本身的样式没有太大的变 化,建议优先选择1-2种出菜比较标准的菜品。		可以考虑拓展至其他餐厅 落地可行性说明:项目测试中,算法识别难度 较低,落地难度较低
公区	消防栓		应消防管理部门要求, 消防栓前禁止一些物 品遮挡。	消防栓遮挡	方案架构: 现场利旧相机+AI超脑+行业平台 方案设计: 若消防栓被遮挡,则消防栓关键位置会消失,所以 算法识别消防栓关键位置,当数量<1就上报平台 风险点: 消防栓样式要统一,或者样式数量有限;部分消防栓 处的相机画面无法看全(角度不合适)可能需要调整设备位置		业务判断:消防管理部门硬性要求,推广时可以不局限于高星酒店场景 落地可行性说明:项目测试中,算法识别难度 较低,落地难度较低
\(\alpha\)	走廊	04-07-2022 皇城四 09:25:35 南大 军评校 —号	为保证五星酒店品牌 形象,非礼宾车禁止 出现在公共区域走廊, 应走其他通道。	非礼宾部推车出现	方案架构: 现场利旧相机+AI超脑+行业平台 方案设计: 同步收集礼宾部推车和非礼宾部推车素材, 算法只 将非礼宾部推车识别结果推送至平台 风险点: 非礼宾部推车的素材较少也较难模拟, 需要确认非礼 宾部推车样式及经常出现的区域, 以便获取训练素材		业务判断:不同高星酒店的服务要求和流程都不太一样,仅供参考 落地可行性说明:项目测试中,算法识别难度 一般,落地难度一般
健身	室内游泳池		游泳池营业期间,必 须有救生员在场。	救生员在离岗(服 装判断)	方案架构: 现场利旧相机+AI超脑+行业平台 方案设计: 与普通人员在离岗需求不同,这里需要根据救生衣工作服(黄色)判断救生员身份,当黄色工作服的救生员数量 <1时,上报事件给行业平台,行业平台通过钉钉OA推送至相关管理人员处。 风险点:需要和用户确定救生员的规定在岗时间,避免出现非工作时间的大量无效报警。		业务判断: 酒店/度假村等游泳池场景,关于 救生员在离岗的需求在夏季会比较多,如果是 室内泳池可以参考;如果是室外泳池、建议做 好现场勘察调研工作后再决定是否做。 落地可行性说明: 在救生员特征明显、与其他 人员之间的区别明显的前提下,算法识别难度 较低,落地难度较低

有难度

酒店: 功能应用落地情况说明

环节	场景	示意图	业务说明	AI应用	场景方案设计	落地情况	业务交底
	住宿楼层		连锁酒店(住宿)的房间楼层,夜间经常会出现一些行为异常的陌生人,存在一定的安全隐患,酒店工作人员需要对存在异常行为的人员进行管控。	人员异常行 为分析 (逗留、徘 徊、倒地、 塞小卡片等)	【部分可尝试】 方案架构: 现场利旧相机+AI超脑+云眸 方案设计: 人员逗留和徘徊使用的是AI超脑基线功能(准确率95%以上), 倒地和塞小卡片未测试 风险点: 倒地和塞小卡片数据量不足、单点测试效果一般, 暂不建议推广。		业务判断:该类建议从酒店集团总部入 手沟通,连锁酒店的单点门店一般不愿 意做额外投入 落地可行性说明:项目测试中,逗留和 徘徊的算法识别难度较低,落地难度较 低;倒地和塞小卡片的效果一般
住宿	打扫房间	User	AI工牌记录了保洁人员打扫房间的全过程,管理人员可以实现可视化管理,但是AI工牌录像画面晃动、查看起来耗时耗力,需要借助AI进行房间内不同区域的快速定位。	透明清扫 (对视频数 据中的房间 进行分区)	【AI工牌视频数据画面晃动】 方案架构: AI工牌+数据采集站+AI超脑+行业平台 方案设计: AI超脑分析存储在数据采集站里的AI工 牌录像,算法识别内容为房间内的一些标志性物品, 例如洗手台、马桶、电视机、床铺、窗户等,识别 结果用于录像视频打标签,帮助管理人员实现快速 定位。 风险点: 由于AI工牌录像画面过于晃动,AI分析结 果不够稳定		业务判断:需求量可以结合AI工牌的出货数量分析,酒店场景的需求量不大,可以考虑其他场景 落地可行性说明:效果测试中,暂不建议推广
餐厅	顾客 用餐 区域		为了保证顾客的用餐体验, 顾客落座后,工作人员需要 询问顾客的用餐意向。	餐前服务询问	方案架构: 现场利旧相机+AI超脑+行业平台 方案设计: 在靠近相机的几个餐桌区域, 当顾客落 座后, 识别是否有身着服务员服装的人员前往餐桌 询问顾客的用餐意向。 风险点: 餐厅内餐桌较多, 受图像二维限制, 存在 空间错位, 无法做全量的识别和分析; 不同餐厅服 务要求不同,该需求涉及组合规则。		业务判断:不同高星酒店的服务要求和流程都不太一样,仅供参考落地可行性说明:项目测试中,算法识别难度一般,落地难度一般